FieldsContainer#
Contains classes associated with the DPF FieldsContainer.
- class ansys.dpf.core.fields_container.FieldsContainer(fields_container=None, server=None)#
Represents a fields container, which contains fields belonging to a common result.
A fields container is a set of fields ordered by labels and IDs. Each field of the fields container has an ID for each label defining the given fields container. These IDs allow splitting the fields on any criteria.
The most common fields container has the label
"time"
with IDs corresponding to time sets. The label"complex"
, which is used in a harmonic analysis for example, allows real parts (id=0
) to be separated from imaginary parts (id=1
).- Parameters
fields_container (ansys.grpc.dpf.collection_pb2.Collection or FieldsContainer, optional) – Fields container created from either a collection message or by copying an existing fields container. The default is “None``.
server (ansys.dpf.core.server, optional) – Server with the channel connected to the remote or local instance. The default is
None
, in which case an attempt is made to use the global server.
Examples
Extract a displacement fields container from a transient result file.
>>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> transient = examples.download_transient_result() >>> model = dpf.Model(transient) >>> disp = model.results.displacement() >>> disp.inputs.time_scoping.connect([1,5]) >>> fields_container = disp.outputs.fields_container() >>> field_set_5 =fields_container.get_fields_by_time_complex_ids(5) >>> #print(fields_container)
Create a fields container from scratch.
>>> from ansys.dpf import core as dpf >>> fc= dpf.FieldsContainer() >>> fc.labels =['time','complex'] >>> for i in range(0,20): #real fields ... mscop = {"time":i+1,"complex":0} ... fc.add_field(mscop,dpf.Field(nentities=i+10)) >>> for i in range(0,20): #imaginary fields ... mscop = {"time":i+1,"complex":1} ... fc.add_field(mscop,dpf.Field(nentities=i+10))
- get_fields_by_time_complex_ids(timeid=None, complexid=None)#
Retrieve fields at a requested time ID or complex ID.
- Parameters
timeid (int, optional) – Time ID or frequency ID, which is the one-based index of the result set.
complexid (int, optional) – Complex ID, where
1
is for imaginary and0
is for real.
- Returns
fields – Fields corresponding to the request.
- Return type
list[Field]
Examples
Extract the fifth time set of a transient analysis.
>>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> transient = examples.download_transient_result() >>> model = dpf.Model(transient) >>> len(model.metadata.time_freq_support.time_frequencies) 35 >>> disp = model.results.displacement() >>> disp.inputs.time_scoping.connect([1,5]) >>> fields_container = disp.outputs.fields_container() >>> field_set_5 =fields_container.get_fields_by_time_complex_ids(5)
- get_field_by_time_complex_ids(timeid=None, complexid=None)#
Retrieve a field at a requested time ID or complex ID.
An exception is raised if the number of fields matching the request is greater than one.
- Parameters
timeid (int, optional) – Time ID or frequency ID, which is the one-based index of the result set.
complexid (int, optional) – Complex ID, where
1
is for imaginary and0
is for real.
- Returns
fields – Field corresponding to the request
- Return type
Examples
Extract the fifth time set of a transient analysis.
>>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> transient = examples.download_transient_result() >>> model = dpf.Model(transient) >>> len(model.metadata.time_freq_support.time_frequencies) 35 >>> disp = model.results.displacement() >>> disp.inputs.time_scoping.connect([1,5]) >>> fields_container = disp.outputs.fields_container() >>> field_set_5 =fields_container.get_fields_by_time_complex_ids(5)
- get_fields(label_space)#
Retrieve the fields at a requested index or label space.
- Parameters
label_space (dict[str,int]) – Scoping of the requested fields. For example,
{"time": 1, "complex": 0}
.- Returns
fields – Fields corresponding to the request.
- Return type
list[Field]
Examples
>>> from ansys.dpf import core as dpf >>> fc= dpf.FieldsContainer() >>> fc.labels =['time','complex'] >>> #real fields >>> for i in range(0,20): ... mscop = {"time":i+1,"complex":0} ... fc.add_field(mscop,dpf.Field(nentities=i+10)) >>> #imaginary fields >>> for i in range(0,20): ... mscop = {"time":i+1,"complex":1} ... fc.add_field(mscop,dpf.Field(nentities=i+10))
>>> fields = fc.get_fields({"time":2}) >>> # imaginary and real fields of time 2 >>> len(fields) 2
- get_field(label_space_or_index)#
Retrieves the field at a requested index or label space.
An exception is raised if the number of fields matching the request is greater than one.
- Parameters
label_space_or_index (dict[str,int], int) – Scoping of the requested fields. For example,
{"time": 1, "complex": 0}
or the index of the field.- Returns
field – Field corresponding to the request.
- Return type
Examples
>>> from ansys.dpf import core as dpf >>> fc = dpf.fields_container_factory.over_time_freq_fields_container( ... [dpf.Field(nentities=10)] ... ) >>> field = fc.get_field({"time":1})
- get_field_by_time_id(timeid=None)#
Retrieves the complex field at a requested time.
- Parameters
timeid (int, optional) – Time ID, which is the one-based index of the result set.
- Returns
fields – Fields corresponding to the request.
- Return type
- get_imaginary_fields(timeid=None)#
Retrieve the complex fields at a requested time.
- Parameters
timeid (int, optional) – Time ID, which is the one-based index of the result set.
- Returns
fields – Fields corresponding to the request.
- Return type
list[Field]
- get_imaginary_field(timeid=None)#
Retrieve the complex field at a requested time.
- Parameters
timeid (int, optional) – Time ID, which is the one-based index of the result set.
- Returns
fields – Field corresponding to the request.
- Return type
- add_field(label_space, field)#
Add or update a field at a requested label space.
- Parameters
label_space (dict[str,int]) – Label space of the requested field. For example, {“time”:1, “complex”:0}.
field (Field) – DPF field to add or update.
Examples
>>> from ansys.dpf import core as dpf >>> fc= dpf.FieldsContainer() >>> fc.labels =['time','complex'] >>> for i in range(0,20): #real fields ... mscop = {"time":i+1,"complex":0} ... fc.add_field(mscop,dpf.Field(nentities=i+10)) >>> for i in range(0,20): #imaginary fields ... mscop = {"time":i+1,"complex":1} ... fc.add_field(mscop,dpf.Field(nentities=i+10))
- add_field_by_time_id(field, timeid=1)#
Add or update a field at a requested time ID.
- fieldField
DPF field to add or update.
- timeid: int, optional
Time ID for the requested time set. The default is
1
.
- add_imaginary_field(field, timeid=1)#
Add or update an imaginary field at a requested time ID.
- Parameters
field (Field) – DPF field to add or update.
timeid (int, optional) – Time ID for the requested time set. The default is
1
.
- select_component(index)#
Select fields containing only the component index.
Fields can be selected only by component index as multiple fields may contain a different number of components.
- Parameters
index (int) – Index of the component.
- Returns
fields – Fields container with one component selected in each field.
- Return type
Examples
Select using a component index.
>>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> transient = examples.download_transient_result() >>> model = dpf.Model(transient) >>> disp = model.results.displacement() >>> disp.inputs.time_scoping.connect([1,5]) >>> fields_container = disp.outputs.fields_container() >>> disp_x_fields = fields_container.select_component(0) >>> my_field = disp_x_fields[0]
- property time_freq_support#
Time frequency support.
- deep_copy(server=None)#
Create a deep copy of the fields container’s data (and its fields) on a given server.
This method is useful for passing data from one server instance to another.
- Parameters
server (ansys.dpf.core.server, optional) – Server with the channel connected to the remote or local instance. The default is
None
, in which case an attempt is made to use the global server.- Returns
fields_container_copy
- Return type
Examples
>>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> transient = examples.download_transient_result() >>> model = dpf.Model(transient) >>> disp = model.results.displacement() >>> disp.inputs.time_scoping.connect([1,5]) >>> fields_container = disp.outputs.fields_container() >>> other_server = dpf.start_local_server(as_global=False) >>> deep_copy = fields_container.deep_copy(server=other_server)
- get_time_scoping()#
Retrieves the time scoping containing the time sets.
- Returns
scoping – Scoping containing the time set IDs available in the fields container.
- Return type
- add_label(label, default_value=None)#
Add the requested label to scope the collection.
- Parameters
label (str) – Labels to scope the entries to. For example,
"time"
.default_value (int, optional) – Default value for existing fields in the collection. The default is
None
.
Examples
>>> from ansys.dpf import core as dpf >>> coll = dpf.Collection(dpf.types.field) >>> coll.add_label('time')
- get_available_ids_for_label(label='time')#
Retrieve the IDs assigned to an input label.
- Parameters
label (str) – Name of the input label. The default is
"time"
.- Returns
ids – List of IDs assigned to the input label.
- Return type
list[int]
- get_label_scoping(label='time')#
Retrieve the scoping for an input label.
This method allows you to retrieve a list of IDs for a given input label in the collection. For example, if the label
el_type
exists in the collection, you can use the get_lable_scoping method to retrieve a list of IDS with this label. You can then use these IDs to request a given entity inside the collection.- Parameters
label (str) – Name of the input label.
- Returns
scoping – IDs scopped to the input label.
- Return type
- get_label_space(index)#
Retrieve the label space of an entry at a requested index.
- Parameters
index (int) – Index of the entry.
- Returns
label_space – Scoping of the requested entry. For example,
{"time": 1, "complex": 0}
.- Return type
dict(str:int)
- has_label(label)#
Check if a collection has a specified label.
- Parameters
label (str) – Label to search for. For example,
"time"
.- Returns
True
when successful,False
when failed.- Return type
bool
Examples
>>> from ansys.dpf import core as dpf >>> coll = dpf.Collection(dpf.types.field) >>> coll.add_label('time') >>> coll.has_label('time') True
>>> coll.has_label('complex') False
- static integral_collection(inpt, server: Optional[ansys.dpf.core.server.DpfServer] = None)#
Creates a collection of integral type with a list.
The collection of integral is the equivalent of an array of data sent server side. It can be used to efficiently stream large data to the server.
- Parameters
inpt (list[float], list[int], numpy.array) – list to transfer server side
- Return type
Notes
Used by default by the
'Operator'
and the``’Workflow’`` when a list is connected or returned.
- property labels#
Retrieve labels scoping the collection.
- Returns
labels – List of labels that entries are scoped to. For example,
["time", "complex"]
.- Return type
list[str]
- set_labels(labels)#
Set labels for scoping the collection.
- Parameters
labels (list[str], optional) – Labels to scope entries to. For example,
["time", "complex"]
.