Note
Click here to download the full example code
Add Nodal Labels on Plots#
You can custom labels to specific nodes with specific label properties. If label for a node is missing, by default nodal scalar value is shown.
First, import the DPF-Core module as dpf_core
and import the
included examples file and DpfPlotter
from ansys.dpf import core as dpf
from ansys.dpf.core import examples
from ansys.dpf.core.plotter import DpfPlotter
Next, open an example and print out the model
object. The
Model
class helps to organize access
methods for the result by keeping track of the operators and data sources
used by the result
file.
Printing the model displays:
Analysis type
Available results
Size of the mesh
Number of results
model = dpf.Model(examples.msup_transient)
print(model)
Out:
DPF Model
------------------------------
Transient analysis
Unit system: MKS: m, kg, N, s, V, A, degC
Physics Type: Mecanic
Available results:
- displacement: Nodal Displacement
- velocity: Nodal Velocity
- acceleration: Nodal Acceleration
- reaction_force: Nodal Force
- stress: ElementalNodal Stress
- elemental_volume: Elemental Volume
- stiffness_matrix_energy: Elemental Energy-stiffness matrix
- artificial_hourglass_energy: Elemental Hourglass Energy
- thermal_dissipation_energy: Elemental thermal dissipation energy
- kinetic_energy: Elemental Kinetic Energy
- co_energy: Elemental co-energy
- incremental_energy: Elemental incremental energy
- elastic_strain: ElementalNodal Strain
------------------------------
DPF Meshed Region:
393 nodes
40 elements
Unit: m
With solid (3D) elements
------------------------------
DPF Time/Freq Support:
Number of sets: 20
Cumulative Time (s) LoadStep Substep
1 0.010000 1 1
2 0.020000 1 2
3 0.030000 1 3
4 0.040000 1 4
5 0.050000 1 5
6 0.060000 1 6
7 0.070000 1 7
8 0.080000 1 8
9 0.090000 1 9
10 0.100000 1 10
11 0.110000 1 11
12 0.120000 1 12
13 0.130000 1 13
14 0.140000 1 14
15 0.150000 1 15
16 0.160000 1 16
17 0.170000 1 17
18 0.180000 1 18
19 0.190000 1 19
20 0.200000 1 20
Get the stress tensor and connect time scoping.
Make sure to define the scoping as "Nodal"
as the requested location,
as the labels are supported only for Nodal results.
stress_tensor = model.results.stress()
time_scope = dpf.Scoping()
time_scope.ids = [20] # [1, 2]
stress_tensor.inputs.time_scoping.connect(time_scope)
stress_tensor.inputs.requested_location.connect("Nodal")
# field = stress_tensor.outputs.fields_container.get_data()[0]
norm_op = dpf.Operator("norm_fc")
norm_op.inputs.connect(stress_tensor.outputs)
field_norm_stress = norm_op.outputs.fields_container()[0]
print(field_norm_stress)
norm_op2 = dpf.Operator("norm_fc")
disp = model.results.displacement()
disp.inputs.time_scoping.connect(time_scope)
norm_op2.inputs.connect(disp.outputs)
field_norm_disp = norm_op2.outputs.fields_container()[0]
print(field_norm_disp)
Out:
DPF stress_0.2s Field
Location: Nodal
Unit: Pa
393 entities
Data:1 components and 393 elementary data
DPF displacement_0.2s Field
Location: Nodal
Unit: m
393 entities
Data:1 components and 393 elementary data
Get the meshed region
mesh_set = model.metadata.meshed_region
Plot the results on the mesh, show the minimum and maximum.
plot = DpfPlotter()
plot.add_field(
field_norm_stress,
meshed_region=mesh_set,
show_max=True,
show_min=True,
label_text_size=15,
label_point_size=5,
)
# Add custom labels to specific nodes with specific label properties.
# If label for a node is missing, by default nodal value is shown.
my_nodes_1 = [mesh_set.nodes[0], mesh_set.nodes[10]]
my_labels_1 = ["MyNode1", "MyNode2"]
plot.add_node_labels(
my_nodes_1,
mesh_set,
my_labels_1,
italic=True,
bold=True,
font_size=26,
text_color="white",
font_family="courier",
shadow=True,
point_color="grey",
point_size=20,
)
my_nodes_2 = [mesh_set.nodes[18], mesh_set.nodes[30]]
my_labels_2 = [] # ["MyNode3"]
plot.add_node_labels(
my_nodes_2,
mesh_set,
my_labels_2,
font_size=15,
text_color="black",
font_family="arial",
shadow=False,
point_color="white",
point_size=15,
)
# Show figure
# You can set the camera positions using the `cpos` argument
# The three tuples in the list `cpos` represent camera position-
# focal point, and view up respectively.
plot.show_figure(
show_axes=True,
cpos=[(0.123, 0.095, 1.069), (-0.121, -0.149, 0.825), (0.0, 0.0, 1.0)],
)

Total running time of the script: ( 0 minutes 1.803 seconds)